[1]鄒文波.人工智能研究現狀及其在測井領域的應用[J].測井技術,2020,(04):323-328.[doi:10.16489/j.issn.1004-1338.2020.04.001]
 ZOU Wenbo.Artificial Intelligence Research Status and Applications in Well Logging[J].WELL LOGGING TECHNOLOGY,2020,(04):323-328.[doi:10.16489/j.issn.1004-1338.2020.04.001]
點擊復制

人工智能研究現狀及其在測井領域的應用()
分享到:

《測井技術》[ISSN:1004-1338/CN:61-1223/TE]

卷:
期數:
2020年04期
頁碼:
323-328
欄目:
綜述
出版日期:
2020-08-30

文章信息/Info

Title:
Artificial Intelligence Research Status and Applications in Well Logging
文章編號:
1004-1338(2020)04-0323-06
作者:
鄒文波
(中石化勝利石油工程有限公司測井公司, 山東 東營 257061)
Author(s):
ZOU Wenbo
(Well Logging Company, Shengli Petroleum Engineering CO. LTD., SINOPEC, Dongying, Shandong 257061, China)
關鍵詞:
人工智能 機器學習 深度學習 神經網絡 巖性識別 儲層參數預測
Keywords:
artificial intelligence machine learning deep learning neural network lithology identification reservoir parameter prediction
分類號:
P631.84
DOI:
10.16489/j.issn.1004-1338.2020.04.001
文獻標志碼:
A
摘要:
人工智能克服傳統機器學習缺陷,打破傳統學習的技術瓶頸,在地球物理測井等領域數據分析和圖像識別方面取得成功應用。通過對人工智能近些年研究現狀進行調研分析,總結出人工智能在測井領域的大數據分析和圖像處理識別上具有一定可行性。通過對人工智能在巖性識別、低電阻率油層識別、儲層參數評價、儲層裂縫孔洞識別等4個測井重點方向的研究現狀分析,厘清人工智能的發展歷程,并對人工智能在測井領域應用上存在的問題進行深入分析,為人工智能在石油勘探開發上發揮重要作用提供技術支撐
Abstract:
Artificial intelligence overcomes the defects of traditional machine learning, and breaks the technical bottleneck of traditional learning, has successfully applied in data analysis and image recognition in geophysical logging. Through investigation and analysis of the research status of AI in recent years, it is concluded that AI has certain feasibility in big data analysis and image processing identification in well logging. Through the analysis of the research status of AI in lithology identification, low-resistance reservoir identification, reservoir parameter evaluation and reservoir fracture identification, the development history of AI is clarified. In-depth analysis of the problems existing in the application provides important technical support for AI technology to play an vital role in oil exploration and development

參考文獻/References:


[1] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning [M]. Cambridge: The MIT Press, 2016.
[2] MCCULLOCH W, PITTS W. A logical calculus of the ideas immanent in nervous activity [J]. Bulletin of Mathematica Biophysics, 1943, 5: 115-133.
[3] ROSENBLATT F. The perception: a probalistic model for information storage and organization in the brain [J]. Psychological Review, 1958, 65(6): 386-408.
[4] DAVID E R, GEOFFREY E H, RONALD J W. Learning representations by back-propagating errors [J]. Nature, 1986, 323: 533-536.
[5] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[6] 潘和平, 樊政軍, 馬勇. 低阻油氣層識別方法研究 [J]. 天然氣工業, 2006, 26(2): 66-68.
[7] 羅德江, 郭科. 小波神經網絡在致密砂巖儲層參數預測中的應用 [J]. 內蒙古石油化工, 2007, 27(12): 119-122.
[8] 汪忠德, 王新海, 張汶, 等. BP人工神經網絡法(ANNS)在塔中地區碳酸鹽巖測井評價中的應用 [J]. 石油天然氣學報, 2008, 30(2): 253-255, 656.
[9] 懷海寧, 劉建英. BP神經網絡在儲層物性預測中的應用 [J]. 內蒙古石油化工, 2008, 28(8): 12-14.
[10] 王娜娜, 張國英, 王明君. 改進的BP神經網絡在石油測井解釋中的應用 [J]. 北京石油化工學院學報, 2008, 16(1): 17-20.
[11] 張濤. BP神經網絡在測井解釋中的應用研究 [D]. 西安: 西北大學, 2010.
[12] KORJANI M, POPA A, GRIJALVA E, et al. A new approach to reservoir characterization using deep learning neural networks [C]∥Society of Petroleum Engineers, 2016.
[13] 吳施楷. 基于深度學習的天然氣儲層檢測方法研究 [D]. 成都: 成都理工大學, 2017.
[14] AZIM R A, SHEHAB T. Estimation of reservoirs fracture network properties using an artificial intelligence technique [J]. International Journal of Applied Engineering Research, 2017, 12(15): 5345-5350.
[15] 段友祥, 李根田. 聯合神經網絡在儲層參數預測中的研究與應用 [J]. 測井技術, 2017, 41(2): 176-182.
[16] 楊柳青, 陳偉, 查蓓. 利用卷積神經網絡對儲層孔隙度的預測研究與應用 [J]. 地球物理學進展, 2019, 34(4): 1548-1555.
[17] 安鵬, 曹丹平, 趙寶銀, 等. 基于LSTM循環神經網絡的儲層物性參數預測方法研究 [J]. 地球物理學進展, 2019, 34(5): 1849-1858.
[18] 曹思遠, 梁春生. 儲層預測中BP神經網絡的應用 [J]. 地球物理學進展, 2002, 17(1): 84-90.
[19] 單敬福, 陳欣欣, 趙忠軍, 等. 利用BP神經網絡法對致密砂巖氣藏儲集層復雜巖性的識別 [J]. 地球物理學進展, 2015, 30(3): 1257-1263.
[20] LUO H, LAI F Q, ZHENG D, et al. A lithology identification method for continental shale oil reservoir based on BP neural network [J]. Journal of Geophysics and Engineering, 2018, 15(3): 895-909.
[21] 賴富強. 電成像測井處理及解釋方法研究 [D]. 東營: 中國石油大學, 2011.
[22] SRISUTTHIYAKORN N. Deep-learning methods for predicting permeability from 2D/3D binary segmented images [C]∥Society of Exploration Geophysicists, 2016.
[23] ZHANG P Y, SUN J M, JIANG Y J, et al. Deep learning method for lithology identification from borehole images [C]∥The 79th EAGE Conference and Exhibition, 2017.
[24] BESTAGINI P, LIPARI V, TUBARO S, et al. A machine learning approach to facies classification using well logs [C]∥SEG International Exposition and 87th Annual Meeting, 2017.
[25] 安鵬, 曹丹平. 基于深度學習的測井巖性識別方法研究與應用 [J]. 地球物理學進展, 2018, 33(3): 1029-1034.
[26] 楊慶軍, 鄧春呈, 楊永利, 等. 人工神經網絡在低阻油層識別上的應用 [J]. 特種油氣藏, 2001, 8(2): 8-10.
[27] 賀鐸華. BP神經網絡識別塔北低阻油氣層 [J]. 物探與化探, 2002, 26(2): 122-125.
[28] 陳清華, 程祥, 王晶, 等. 人工神經網絡在閔北斷塊低阻油層識別上的應用 [J]. 海洋地質前沿, 2015, 31(11): 52-57.
[29] 張東曉, 陳云天, 孟晉. 基于循環神經網絡的測井曲線生成方法 [J]. 石油勘探與開發, 2018, 45(4): 598-607.
[30] 項云飛, 康志宏, 郝偉俊, 等. 基于線性回歸與神經網絡的儲層參數預測復合方法 [J]. 科學技術與工程, 2017, 17(31): 46-52.
[31] ZHU L Q, ZHANG C, ZHANG C M, et al. Prediction of total organic carbon content in shale reservoir based on a new integrated hybrid neural network and conventional well logging curves [J]. Journal of Geophysics and Engineering, 2018, 15(3): 1-23.
[32] 廖明書. 碳酸鹽巖裂縫性油氣藏測井資料處理方法的探討 [J]. 石油學報, 1980, 1(3): 19-32.
[33] 李舟波, 劉四新, 尚林閣. 神經元網絡在利用測井資料劃分裂縫性儲層中的應用 [C]∥1992年中國地球物理學會第八屆學術年會論文集, 1992.
[34] 陳鋼花, 吳文圣, 王中文, 等. 利用地層微電阻率成像測井識別裂縫 [J]. 測井技術, 1999, 23(4): 39-41, 58.
[35] 王鵬, 金衛東, 高會軍, 等. 聲、電成像測井資料裂縫識別技術及其應用 [J]. 測井技術, 2000, 24(增刊1): 487-490, 555.
[36] 高霞, 謝慶賓. 儲層裂縫識別與評價方法新進展 [J]. 地球物理學進展, 2007, 22(5): 1460-1465.
[37] XUE Y C, CHENG L S, MOU J Y, et al. A new fracture prediction method by combining genetic algorithm with neural network in low-permeability reservoirs [J]. Journal of Petroleum Science and Engineering, 2014(121): 159-166.
[38] 楊緒海, 張曉春. 利用聲成像測井數據實現巖石裂縫特征的自動識別 [J]. 中國海上油氣地質, 2000, 14(6): 64-66.
[39] 王敏. 基于二維成像測井的裂縫性儲層測井評價方法研究 [D]. 東營: 中國石油大學, 2010.
[40] 張林, 張承森, 謝芳, 等. 基于HOG和熵方法的成像測井典型地質現象自動識別研究 [J]. 中州煤炭, 2017(1): 144-150.
[41] 劉文斌. 火山巖儲層縫洞測井自動識別和定量評價 [D]. 長春: 吉林大學, 2017.


相似文獻/References:

[1]敖德逵,邵才瑞,張榮明,等.人工智能地層分層對比方法研究及應用[J].測井技術,2000,24(S1):524.
 Ao Dekui,Shao Cairui,et al ..On Artificialized intelligence Stratigraphic Correlation Method and Its Application.[J].WELL LOGGING TECHNOLOGY,2000,24(04):524.
[2]陳遵德.測井數據模式識別中的信息優化方法[J].測井技術,1998,22(06):43.
 Chen Zunde.A Method for Information Optimization in Pattern Recognition With Log Data[J].WELL LOGGING TECHNOLOGY,1998,22(04):43.
[3]邵才瑞,李洪奇,張福明,等.人機聯作智能地層對比技術[J].測井技術,1998,22(06):55.
 Shao Cairui,Li Hongqi,et al..The Interactive Technology of Artificial Intelligence for Well Log Correlation[J].WELL LOGGING TECHNOLOGY,1998,22(04):55.
[4]王中秋.診斷抽油機井故障的智能系統[J].測井技術,1990,14(01):52.
 Wang Zhongqiu.An Intelligent System Diagnosing Failure in Pump Wells[J].WELL LOGGING TECHNOLOGY,1990,14(04):52.
[5]伊廣林.人工智能在地質勘探中的應用[J].測井技術,1984,08(05):6.
[6].測井解釋人工智能“專家系統”研制有進展[J].測井技術,1984,08(05):59.
[7]周宇,魏國齊,郭和坤,等.核磁共振孔隙度影響因素分析與校準[J].測井技術,2011,35(03):210.
 ZHOU Yu,WEI Guoqi,GUO Hekun.Impact Factors Analysis and Decision Tree Correction of NMR Porosity Measurements[J].WELL LOGGING TECHNOLOGY,2011,35(04):210.
[8]江凱,王守東,胡永靜,等.基于Boosting Tree算法的測井巖性識別模型[J].測井技術,2018,42(04):395.[doi:10.16489/j.issn.1004-1338.2018.04.005]
 JIANG Kai,WANG Shoudong,HU Yongjing,et al.Lithology Identification Model by Well Logging Based on Boosting Tree Algorithm[J].WELL LOGGING TECHNOLOGY,2018,42(04):395.[doi:10.16489/j.issn.1004-1338.2018.04.005]
[9]陳玉林,李戈理,楊智新,等.基于KNN算法識別合水地區長7儲層巖性巖相[J].測井技術,2020,(02):182.[doi:10.16489/j.issn.1004-1338.2020.02.014]
 CHEN Yulin,LI Geli,YANG Zhixin,et al.Identification of Lithology and Lithofacies of Chang 7 Reservoir in Heshui Area by KNN Algorithm[J].WELL LOGGING TECHNOLOGY,2020,(04):182.[doi:10.16489/j.issn.1004-1338.2020.02.014]
[10]王興龍,王龍,王亞青,等.利用C50決策樹算法解釋碳酸鹽巖儲層滲透率[J].測井技術,2020,(03):300.[doi:10.16489/j.issn.1004-1338.2020.03.016]
 WANG Xinglong,WANG Long,WANG Yaqing,et al.Application of C5.0 Decision-tree Algorithm to Interpret Permeability of Carbonate Reservoir[J].WELL LOGGING TECHNOLOGY,2020,(04):300.[doi:10.16489/j.issn.1004-1338.2020.03.016]

備注/Memo

備注/Memo:
(修改回稿日期: 2020-04-16 本文編輯 王小寧)作者簡介: 鄒文波,男,1988年生,工程師,從事野外測井資料采集與處理工作。E-mail:[email protected]
更新日期/Last Update: 2020-08-25
辽宁十一选五玩法