[1]古銳瑤,王莉,陳鳴,等.孔隙裂隙地層中偶極聲源的橫波輻射聲場[J].測井技術,2020,(04):329-333.[doi:10.16489/j.issn.1004-1338.2020.04.002]
 GU Ruiyao,WANG Li,CHEN Ming,et al.Radiation Characteristics of Dipole Shear Wave-Field in Cracked Porous Formation[J].WELL LOGGING TECHNOLOGY,2020,(04):329-333.[doi:10.16489/j.issn.1004-1338.2020.04.002]
點擊復制

孔隙裂隙地層中偶極聲源的橫波輻射聲場()
分享到:

《測井技術》[ISSN:1004-1338/CN:61-1223/TE]

卷:
期數:
2020年04期
頁碼:
329-333
欄目:
測井方法
出版日期:
2020-08-30

文章信息/Info

Title:
Radiation Characteristics of Dipole Shear Wave-Field in Cracked Porous Formation
文章編號:
1004-1338(2020)04-0329-05
作者:
古銳瑤1 王莉1 陳鳴2 曹景記3
(1.防災科技學院, 河北 燕郊 065201; 2.中海石油(中國)有限公司湛江分公司, 廣東 湛江 524057; 3.中海油研究總院有限責任公司, 北京 100028)
Author(s):
GU Ruiyao1 WANG Li1 CHEN Ming2 CAO Jingji3
(1. Institute of Disaster Prevention, Yanjiao, Hebei 065201, China; 2. CNOOC(China)Limited Zhanjiang Branch Company, Zhanjiang, Guangdong 524057, China; 3. CNOOC Research Institute CO. LTD., Beijing 100028, China)
關鍵詞:
偶極橫波遠探測測井 孔裂隙介質 孔隙度 裂隙密度 偶極聲源 橫波輻射聲場
Keywords:
dipole acoustic reflection imaging technology cracked porous media porosity crack density dipole source shear wave radiation field
分類號:
P631.84
DOI:
10.16489/j.issn.1004-1338.2020.04.002
文獻標志碼:
A
摘要:
孔隙和裂隙通常在脆性巖石中同時發育,影響聲波測井過程中聲源在地層中的輻射波場。為研究偶極子聲源輻射到孔隙、裂隙地層遠場中橫波能量的空間分布與大小,利用孔隙、裂隙地層波動理論計算不同孔隙度與裂隙密度下SH橫波和SV橫波的遠場輻射圖樣及不同頻率下2種橫波的能流大小。結果表明,SH橫波能量在井外遠場中的空間分布與大小均優于SV橫波,起到主導作用。隨著地層孔隙度和裂隙密度的增加,SH橫波和SV橫波的最大能流逐漸減小,且在相同孔隙和裂隙發育度下,最大橫波能流隨孔隙度的增加衰減更加迅速
Abstract:
Pores and fractures usually develop in brittle rocks at the same time, which affect the radiation wave field of sound source in the formation during acoustic log. To study the shear-wave radiation wavefield excited by a dipole source, the unified theory for elastic wave propagation in cracked porous media is applied in this work. The far field radiation directivities of SH-shear and SV-shear wave with various porosities and crack densities are investigaed, and the SH-shear and SV-shear wave radiation energy flow change rules with source-excited frequency under different pore and crack parameters are also analyzed. The simulation results show that the SH-wave radiation characteristics, in terms of angular coverage and radiation efficiency, are superior compared to that of the SV-wave, playing a dominant role in the radiated wavefield. However, with increasing the formation porosity and crack density, the radiation energy flow maximum values of SH-and SV-shear waves decrease. Under the same porosity and fracture development degree, the maximum shear wave energy flow decays more rapidly with the increase of porosity

參考文獻/References:



[1] 唐曉明, 魏周拓. 聲波測井技術的重要進展: 偶極橫波遠探測測井 [J]. 應用聲學, 2012, 31(1): 10-17.
[2] 莊春喜, 燕菲, 孫志峰, 等. 偶極橫波遠探測測井數據處理及應用 [J]. 測井技術, 2014, 38(3): 330-336.
[3] TANG X M, PATTERSON D. Single-well S-wave imaging using multi-component dipole acoustic log data [J]. Geophysics, 2009, 74(6): 211-223.
[4] TANG X M, CAO J J, WEI Z T. Shear-wave radiation, reception, and reciprocity of a borehole dipole source: with application to modeling of shear-wave reflection survey [J]. Geophysics, 2014, 79(2), T43-T50.
[5] 曹景記, 唐曉明, 魏周拓. 偶極聲源在裸眼井及套管井外的橫波輻射特征 [J]. 地球物理學報, 2014, 57(5): 1683-1692.
[6] 曹景記, 唐曉明, 蘇遠大, 等. 充液井中多極聲源的輻射效率 [J]. 地球物理學報, 2016, 59(2): 757-766.
[7] O’CONNELl R J, BUDIANSKY B. Viscoelastic properties of fluid saturated cracked solids [J]. Journal of Geophys Research, 1977, 82(36): 5719-5735.
[8] DVORKIN J, NUR A. Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms [J]. Geophysics, 1993, 58(4): 524-533.
[9] 唐曉明. 含孔隙、裂隙介質彈性波動的統一理論: Biot理論的推廣 [J]. 中國科學: 地球科學, 2011, 41(6): 784-795.
[10] TANG X M, CHEN X L, XU X K. A cracked porous medium elastic wave theory and its application to interpreting acoustic data from tight formations [J]. Geophysics, 2012, 77(6): D245-D252.
[11] CHEN X L, TANG X M, QIAN Y P. Simulation of multipole acoustic logging in cracked porous formations [J]. Geophysics, 2014, 79(1): D1-D10.
[12] 陳雪蓮, 唐曉明, 錢玉萍. 含孔隙、裂隙致密介質中多極子聲波的傳播特征 [J]. 地球物理學報, 2014, 57(9): 2961-2970.
[13] MARKOVA I, JARILLO G R, MARKOV M, et al. Squirt flow influence on sonic log parameters [J]. Geophysical Journal International, 2014, 196(2): 1082-1091.
[14] 唐曉明, 鄭傳漢. 定量測井聲學 [M]. 北京: 石油工業出版社, 2004.
[15] 郭敦仁. 數學物理方法 [M]. 北京: 人民教育出版社, 1978.
[16] 程昌鈞, 朱媛媛. 彈性力學 [M]. 上海: 上海大學出版社, 2005.


相似文獻/References:

[1]莊春喜,燕菲,孫志峰,等.偶極橫波遠探測測井數據處理及應用[J].測井技術,2014,38(03):330.[doi:10.3969/j.issn.1004-1338.2014.03.015]
 ZHUANG Chunxi,YAN Fei,SUN Zhifeng,et al.Data Processing and Applications of Dipole Shear-wave Imaging Logging[J].WELL LOGGING TECHNOLOGY,2014,38(04):330.[doi:10.3969/j.issn.1004-1338.2014.03.015]
[2]武衛鋒,劉樹鞏.偶極橫波遠探測技術在X油田的驗證及應用[J].測井技術,2018,42(06):695.[doi:10.16489/j.issn.1004-1338.2018.06.016]
 WU Weifeng,LIU Shugong.erification and Application of Dipole Shear-wave Imaging Logging Data in X Oilfield[J].WELL LOGGING TECHNOLOGY,2018,42(04):695.[doi:10.16489/j.issn.1004-1338.2018.06.016]
[3]牛德成,陳鳴,張聰慧,等.低頻偶極橫波遠探測測井在南海油田的應用[J].測井技術,2019,43(02):190.[doi:10.16489/j.issn.1004-1338.2019.02.015]
 NIU Decheng,CHEN Ming,ZHANG Conghui,et al.Application of Low-frequency Dipole Shear Wave Remote Sensing Technology in South China Sea Oilfield[J].WELL LOGGING TECHNOLOGY,2019,43(04):190.[doi:10.16489/j.issn.1004-1338.2019.02.015]

備注/Memo

備注/Memo:
(修改回稿日期: 2020-06-03 本文編輯 張一艷)基金項目: 廊坊市科技支撐計劃項目(2018011020); 中央高;究蒲袠I務青年項目(ZY20180209)。第一作者: 古銳瑤,1992年生,女,助教,從事聲波測井研究工作。E-mail:[email protected]通訊作者: 曹景記,1989年生,男,工程師,從事聲波測井理論方法及儀器設計研究工作。E-mail:[email protected]
更新日期/Last Update: 2020-08-25
辽宁十一选五玩法